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Surface tension

At the interface between two materials physical properties change rapidly over distances com-
parable to the molecular separation scale. Since a molecule at the interface is exposed to a
different environment than inside the material, it will also have a different binding energy.
In the continuum limit where the transition layer becomes a mathematical surface separating
one material from the other, the difference in molecular binding energy manifests itself as a
macroscopic surface energy density. And where energy is found, forces are not far away.

Molecules sitting at a free liquid surface against vacuum or gas have weaker binding
than molecules in the bulk. The missing (negative) binding energy can therefore be viewed
as a positive energy added to the surface itself. Since a larger area of the surface contains
larger surface energy, external forces must perform positive work against internal surface
forces to increase the total area of the surface. Mathematically, the internal surface forces are
represented by surface tension, defined as the normal force per unit of length. This is quite
analogous to bulk tension (i.e. negative pressure), defined as the normal force per unit of area.

In homogeneous matter such as water, surface tension does not depend on how much the
surface is already stretched, but stays always the same. Certain impurities, called surfactants,
have dramatic influence on surface tension because they agglomerate on the surface and form
an elastic skin which resists stretching with increasing force. Best known among these are
soaps and detergents from which one can blow so beautiful bubbles. A lipid membrane also
surrounds every living cell and separates the internal biochemistry from the outside.

Although surface tension is present at all interfaces, it is most important for small fluid
bodies. At length scales where surface tension does come into play the shape of an inter-
face bears little relation to the gravitational equipotential surfaces that dominate the static
shapes of large-scale systems analyzed in the preceding chapter. In this chapter surface ten-
sion is introduced and only applied to various hydrostatic systems. The physics of surface
tension has a long history and excellent books exist on this subject, for example the recent
[Gennes et al. 2002].

5.1 Basic physics of surface tension
Although surface tension may be taken as a primary phenomenological concept in continuum
physics, it is nevertheless instructive first to make a simple molecular model which captures

the essential features of the phenomenon and even allows us to make an estimate of its mag-
nitude. Afterwards we shall define the concept without recourse to molecules.
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Cross section of a primitive three-
dimensional model of a mate-
rial interfacing to vacuum. A
molecule at the surface has only
five bonds compared to the six
that link a molecule in the inte-
rior. The missing bond energy at
the surface gives rise to a positive
surface energy density, which is
the cause of surface tension.

afmIm™2]  est
Water 72 126
Methanol 22 62
Ethanol 22 55
Bromine 41 44
Mercury 337 222

Surface energy (or surface ten-
sion) for some liquids at 25° C
in units of millijoule per square
meter. The estimates are ob-
tained using eq. (5.1) . Data from
[Lide 1996].

Molecular origin of surface energy

Even if surface tension is most important for liquids, we shall here consider a simple regular
“solid” surrounded by vacuum. The molecules are placed in a cubic grid (see the margin
figure) with grid length equal to the molecular separation length L.,,. Each molecule in
the interior has six bonds to its neighbors whereas a surface molecule has only five. If the
total binding energy of a molecule in the bulk is €, a surface molecule will only be bound by
%e. The missing binding energy corresponds to adding an extra positive energy ée for each
surface molecule.

The binding energy may be estimated as € ~ hm where / is the specific heat of evap-
oration (evaporation enthalpy per unit of mass) and m = M,/ Ny = ponol is the mass of
a single molecule. Dividing the molecular surface energy ée with the molecular area scale

ernol’ we arrive at the following estimate of the surface energy density',
ée 1 h 1 hol 5.1)
AR = N = —— & — mol- .
ﬁlol 6 L ﬁlol 6 P l

The appearance of the molecular separation scale is quite understandable because pL 0 rep-
resents the effective surface mass density of a layer of thickness L. One might expect that
the smallness of the molecular scale would make the surface energy density insignificant in
practice, but the small thickness is offset by the fairly large values of p and 4 in normal liquids,
for example water.

In the margin table a few measured and estimated values are shown. For water the mass density is
p ~ 103 kg m™3 and the specific evaporation heat h ~ 2.4 x 10° J kg™!, leading to the estimate
o ~ 0.126 T m™2, which should be compared to the measured value of 0.072 T m~2 at 25° C.
Although not impressive these estimates are not too bad, considering the crudeness of the model.

Work and surface energy density

Increasing the area of an interface with energy density « by a tiny amount d A requires an
amount of work equal to the surface energy contained in the extra piece of interface,

AW = adA. (5.2)

Except for the sign, this is quite analogous to the mechanical work d W = —p d V' performed
against bulk pressure when the volume of the system is expanded by d V. But where a volume
expansion under positive pressure performs work on the environment, increasing the area
against a positive surface energy density requires work from the environment.

The surface energy density associated with a liquid or solid interface against vacuum
(or gas) is always positive because of the missing negative binding energy of the surface
molecules. The positivity of the surface energy density guarantees that such interfaces seek
towards the minimal area consistent with the other forces that may be at play, for example
gravity. Small raindrops and air bubbles are for this reason nearly spherical. Larger falling
raindrops are also shaped by viscous friction and air currents, giving them a more complicated
shape (see figure 5.1).

Interfaces between solids and liquids or between liquids and liquids are not required to
have positive interfacial energy density. The sign depends on the strength of the cohesive
forces holding molecules of a material together compared to the strength of the adhesive
forces between the opposing molecules of the interfacing materials. The interface between
a solid and liquid is normally not deformable, and a negative interfacial energy density has

I'There is no universally agreed-upon symbol for surface tension which variously denoted c, ¥, o, S, Y and T .
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no dramatic effect. If on the other hand the interfacial energy density between two liquids
is negative, a large amount of energy can be released by maximizing the area of the inter-
face. Folding it like crumpled paper, the two fluids are mixed thoroughly instead of being
kept separate. Fluids that readily mix with each other, such as alcohol and water, may be
viewed as having negative interfacial energy density, although the concept is not particularly
well-defined in this case. Immiscible fluids like oil and water must on the other hand have
positive interfacial energy density which makes them seek towards minimal interface area
with maximal smoothness.

Since an interface has no macroscopic thickness, it may be viewed as being locally flat
everywhere, implying that the surface energy density cannot depend on the curvature of the
interface, but only on the properties of the interfacing materials. If these are homogeneous
and isotropic—as they often are—the value of the energy density will be the same everywhere
on the interface. In the following we shall focus on hydrostatics of homogeneous materials
and assume that surface tension takes the same value everywhere on a static interface (with
exception of soap films).

Force and surface tension

The resistance against extension of a free surface shows that the surface has an internal surface
tension which we shall now see equals the surface energy density «. Suppose we wish to
stretch the surface along a straight line of length L by a uniform amount ds (see the margin
figure). Since the area is increased by dA = Lds, it takes an amount of work d W = «Lds,
from which we conclude that the force we apply orthogonally to the line is F = dW/ds =
aL. In equilibrium, the applied normal force per unit of length, /L = «, defines the internal
surface tension «. Surface tension is thus identical to surface energy density, and is of course
measured in the same unit, N m~! = J m~2.

Formally, surface tension is defined in much the same way as pressure was defined in
equation (2.10) on page 24. Let an oriented open surface be divided into two parts by an
oriented curve, such that the surface has a uniquely defined left and right hand side with
respect to the curve. If 7 denotes the normal to the surface, then

dF =adl xn, 5.3)

is the force that the right hand side of the surface exerts on the left hand side through the curve
element d £ (see the margin figure). The total force is obtained by integrating this expression
along the curve. It follows immediately that to shift a piece of the curve of length L by ds
orthogonal to the curve the work is given by eq. (5.2) with dA = Lds.

At an interface between homogenous materials, surface tension does not depend on how
much the interface has already been stretched, and this makes the interface quite different
from an elastic membrane which like the skin of a balloon resists stretching with increasing
force because elastic tension increases as the deformation grows (Hooke’s law; see chapter
8). Soap films and biological membranes are an exception and behave like elastic membranes
because of their peculiar surfactants. That is in fact what accounts for their great stability (see
section 5.2).

Case: Pressure excess in a sphere

Everybody knows that the pressure inside a toy balloon is higher than outside, and that the ex-
cess pressure is connected with the tension in the taut balloon skin. Here we shall calculate the
surface pressure discontinuity for a droplet of a homogeneous liquid hovering weightlessly,
for example in a spacecraft. In the absence of all external forces, surface tension will attempt
make the droplet spherical because that shape has smallest area for a given volume.
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The basic surface tension exper-
iment is a 2-dimensional version
of the 3-dimensional experiment
with a piston in a container. Us-
ing a soap film and metal wire
as both ‘container’ and moveable
‘piston’, it can easily be carried
out in the home.

A piece of an oriented surface
divided by an oriented curve
(dashed). The cross product of
the curve element d £ and the sur-
face normal n determines the di-
rection of the force with which
the piece of the surface on the
right acts on the piece on the left
across the curve element.
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Po
P > Po

Surface tension makes the pres-
sure higher inside a spherical
droplet or bubble.

The Danish Meteorological Insti-
tute (http://www.dmi.dk)
uses the above symbol for heavy
rain.

Figure 5.1. Steadily falling raindrops are subject to the combined effects of surface tension, gravity,
friction, and air currents. Left: Small raindrops are dominated by surface tension and therefore nearly
spherical. Here the drop radius is slightly larger than the capillary length of 2.7 mm and the drop is
slightly oval. Right: Larger raindrops assume a typical “hamburger” shape. Reproduced from [McD54].

Surface tension will also attempt to contract the ball but is stopped by the build-up of an
extra positive pressure Ap inside the liquid. If we increase the radius R by an amount dR we
must perform the extra work d W = o dA — Ap dV where d A is the change in surface area
and dV is the change in volume. Since dA = d(4nR?) = 8nRdR anddV = d (37R?) =
4w R? dR, the work becomes dW = (a87R — Ap 4nR?)dR. In equilibrium, where the
contraction forces must balance the pressure forces, there should be nothing to gain or lose,
i.e. dW = 0, from which it follows that

Ap — 200
P = R
It should be emphasized that the above argument holds as well for a spherical air bubble in

the same liquid: the pressure excess inside a bubble is exactly the same as in a droplet of the
same radius.

5.4)

A spherical raindrop of diameter 1 mm has an excess pressure of only about 300 Pa, which is tiny
compared to atmospheric pressure (10° Pa). In clouds raindrops are tiny with diameter about 1 um
implying a pressure excess a thousand times larger, about 3 atm.

Capillary length

When can we disregard the influence of gravity on the shape of a raindrop? Consider a
spherical raindrop of radius R falling steadily through the air with its weight being balanced
by air drag. Since the drag force balances gravity, the condition must be that the variation
in hydrostatic pressure inside the drop should be negligible compared to the pressure excess
due to surface tension. We must in other words require that pggo2R < 2a/R where py is
the density of water (minus the tiny density of air). Solving for R the inequality becomes

R <« L. where
Le= |-Z (5.5)
Pogo

is the so-called capillary length (also called the capillary constant). For gravity to be negligi-
ble, the radius of the drop should be much smaller than the capillary length.

The capillary length equals 2.7 mm for the air—water interface at 25° C. Falling raindrops
are deformed by the interaction with the air and never take the familiar teardrop shape with
a pointed top and a rounded bottom, so often used in drawings—and even by some national
meteorology offices. Small raindrops with radius up to about 2 mm are nearly perfect spheres,
but for larger radius they become increasingly flattened (see figure 5.1). Eventually, when the
radius exceeds 4.5 mm, a raindrop will break up into smaller drops due to the interaction with
the air.
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Although derived for a sphere, the capillary length is also the characteristic length scale
at which static pending drops and captive bubbles begin to deviate from being spherical (see
section 5.8). To understand how the capillary length, calculated from the density of water, can
also be meaningful for an air bubble in water, one must remember that the surrounding water
imposes a changing hydrostatic pressure over the bubble (which is the cause of buoyancy).
More generally the density parameter should be taken to be |Ap| where Ap is the density
difference between the fluid in the sphere and the fluid that surrounds it. When the two
densities are nearly equal, the capillary length can become very large.

Marangoni forces

It is intuitively clear that any variation in surface tension along an interface will create tangen-
tial (shear) forces, so-called Marangoni forces. Such variation can arise from inhomogeneous
material properties, or from temperature variations. Surface tension generally decreases with
rising temperature which is one of the reasons we use hot water for washing ourselves and
our clothes. Unless balanced by other forces shear surface forces cannot be sustained in a
liquid at rest but will unavoidably set it into motion. In static soap bubbles gravity is in fact
balanced by variations in surface tension caused by the elastic reaction to stretching of the
bubble “skin”. Apart from a discussion of this particular case in section 5.2, we shall not
investigate the Marangoni effect and its consequences further here (see however [5]).

Soap-powered boat: The Marangoni effect has been exploited in toys, for example the soap-
powered boat. The “boat” is made from a small piece of wood, polystyrene or cardboard cut out
in a shape like the one in the margin figure. The “boat” is driven around on the water surface by
a small piece of soap mounted at the rear end. The dissolving soap lowers the surface tension
of the water behind the boat, and the unbalance with the larger surface tension ahead of the boat
pulls the boat forward. The fun stops of course when the dissolving soap has reached the same
concentration all over the water surface. A piece of camphor is also effective as motor for the little
boat but is harder to come by.

5.2 Soap bubbles

Children and adults alike love to play with soap bubbles, and have done so for centuries
[Boys 1959]. If you start to think a bit about what is really going on with these fantastic
objects, many questions arise. Why do we need soap for making bubbles? Why can’t one
make bubbles out of pure water? How big can they become? How long can they last? Freely
floating soap bubbles are fun because their weight (minus buoyancy) is so tiny that they remain
floating in the slightest updraft. The skin of a soap bubble is so strong that a bubble can be
supported by a hand or a wire frame as in figure 5.2 (right). Bubbles are not the only soap
films that can be created. Using wire frames, it is possible to create all kinds of geometric
shapes (see figure 5.3) that have attracted the lasting interest of mathematicians [CW06].

The nature of bubble liquid

An air-filled bubble created from a thin liquid film has always a huge surface area compared to
the area of a spherical volume containing the same amount of liquid. Any external “agent” —
gravity, drafts of air, encounters with other objects, evaporation, and draining — will stretch
the skin in some places and maybe compress it in others. If the surface tension is constant, as
it is for homogenous liquids like pure water, the same force will keep on stretching the skin
until it becomes so thin that the bubble bursts, and instantly turns into one or more spherical
droplets. Large air-filled bubbles with a skin made from pure water are inherently unstable.
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Carlo Guiseppe Matteo
Marangoni (1840-1925). Italian
physicist. Studied the effect of
spatial variations in surface ten-
sion for his doctoral dissertation
in 1865.

Shape of soap-powered boat. A
pea-sized piece of soap or cam-
phor is deposited in the small cut-
out to the left.
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Schematic structure of a mono-
layer of soap molecules on a hor-
izontal water surface. The hy-
drophobic tails stick out in the air
with the hydrophilic heads buried
in water (small circles).
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Schematic structure of a bilayer
of soap molecules. The hy-
drophobic tails stick out on both
sides of the membrane while the
hydrophilic heads are buried in
the thin layer of water.

Figure 5.2. Left: Free-floating, nearly perfect spherical soap bubble with reflection of clouds (Mila
Zinkova. Permission to be obtained). Right: Nearly spherical supported bubble. Permission to be
obtained from [Wick 1997].

A suitable surfactant [Gennes et al. 2002, ch. 7], for example soap, can stabilize the
skin. Soap molecules are salts of fatty acids with hydrophilic (electrically charged) heads and
hydrophobic (neutral) tails, making soap “love” both watery and fatty substances. This is the
main reason why we use soap as detergent for washing; another is that the surface tension of
soapy water is only about one third of that of pure water. Almost all surface impurities will in
fact diminish surface tension of water because they reduce the fairly strong native attraction
between water molecules. On the surface of soapy water, the soap molecules tend to orient
themselves with their hydrophobic tails sticking out of the surface and their heads buried in
the water. In a thin film of soapy water, the tails of the soap molecules stick out on both sides
and form a bilayer with water in between.

The stabilizing effect of soap is primarily due to the coherence of the bilayer in conjunc-
tion with the lower surface tension of soapy water. When the soap film is stretched locally,
the soap molecules are pulled apart and the surface tension increases because the intermolec-
ular forces increase with distance (see figure 1.2 on page 5). Long before the structure of
soap molecules was known, such a mechanism was suspected to lie behind bubble stability
[Boys 1959]. Viscosity can also stabilize bubbles by slowing drainage, and this is why glyc-
erin is often included in soap bubble recipes. The soap molecules crowding at the surface
furthermore prolong the lifetime of a soap bubble by diminishing evaporation.

Mass of a bubble

A spherical air-filled soap bubble of radius R has two surfaces, one from air to soapy water
and one from soapy water to air. Each gives rise to a pressure jump of 2/ R where « is the
monolayer surface tension. The total pressure inside a soap bubble is thus Ap = 4a/ R larger
than outside (although « is only about 1/3 of that of pure water). Taking & ~ 0.025 N m™!
and a nominal radius R &~ 10 cm we find Ap ~ 1 Pa. The relative pressure increase is tiny,
Ap/po ~ 107> where py ~ 1 bar is the ambient air pressure. The ideal gas law (2.27) tells
us that the relative density increase is the same, Ap/po = Ap/ po where py is the ambient air
density. Whereas the true mass of the air in the nominal bubble is My = %nR3 po ~ 5 g, the
effective mass of the air reduced by buoyancy is only AM = %nR3A o~ 50 ug.

The play in spectral colors often seen in soap bubbles tells us that the thickness of the
bubble skin may be comparable to the wavelength of light — about half a micrometer —
which makes it about 1000 times thicker than the size of the hydrophilic head of a soap
molecule. Taking the skin thickness of the nominal bubble to be constant, t = 1 um , the
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mass of the water in the skin becomes M; = 47R?tp; ~ 0.13 g where p; is the density of
water. This is much larger than the effective mass of the air AM, and one may easily verify
that the ratio AM/M; ~ 4 x 10~ is independent of the radius and thus the same for all soap
bubbles with the nominal skin thickness.

Concluding, we have shown that buoyancy almost completely cancels the weight of the
air in the bubble, so that the effective mass of the whole bubble always equals the mass of its
skin, M ~ M/ which comes to 0.13 gram for the nominal bubble. This tiny mass is the reason
that even a gentle air current can make a bubble float away. In example 16.3 on page 277 we
shall estimate the terminal fall velocity of fairly large spherical bubbles like this to be about
0.3 m/s, independent of the radius.

* The need for Marangoni forces

The weight of the bubble skin is the reason that surface tension cannot be perfectly constant
in equilibrium but must increase when the skin is stretched. Suppose for definiteness that a
bubble is falling with steady velocity through the air, only subject to the force of gravity and
to drag-forces from the surrounding air. The external forces must of course cancel each other
globally to secure steady motion, but will not cancel perfectly everywhere on the skin of the
bubble. Whereas gravity acts in the same way all over the skin, drag acts most strongly on
the lower part of the bubble, as does the wire frame support for the bubble at rest in figure 5.2
(right). Consequently, internal forces are necessary to secure that all parts of the bubble remain
at rest with respect to each other.

Here we shall disregard drag and supporting forces and only discuss how internal forces
locally can balance gravity on the upper part of the bubble. Consider a little circle on the
sphere with fixed polar angle 6 to the vertical. The mass of the skin in a small circular band
dfis dM = pyt-2nwRsinf - Rdf. The tangential component of its weight can only be
balanced by a corresponding variation da in surface tension of soapy water over the interval
d6. Taking into account that the skin has two surfaces, the tangential force balance becomes
gosinf8dM + 2xRsin62da = 0, or

da 1
7= —Epergo sin 6. (5.6)
Assuming R to be nearly constant, the solution is «(f) = o + p;TRgg cos? %0 where « is
the surface tension of the unstretched surface at & = 180°. The weight of the lower half of
the spherical bubble divided by the surface tension force acting on its rim is a dimensionless
number, called the Bond number,

Bo = ZZRtPigo _ TR (5.7)
27 Ra L2
where L, ~ 1.6 mm is the capillary length of soapy water.

For the nominal bubble with 7 = 1 um, R = 10 cm and ¢ = 0.025 N m~! we find Bo =
0.04. The relative variation in surface tension over the bubble is thus about 4% indicating that
the skin must be stretched by a comparable amount to deliver the necessary elastic Marangoni
forces. The radial component of the skin’s weight also demands a local change in the bubble
radius of the same magnitude to secure a constant pressure difference between the air inside
and outside the bubble (see problem 5.7). For R = 2.5 m, the Bond number becomes unity,
and the bubble undergoes major deformation, and perhaps breakup. You should probably
never expect to encounter free-floating soap bubbles larger than a couple of meters?.

2The largest free-floating bubble ever made had a volume of 2.98 m? corresponding to a spherical diameter of
1.79 meters [6].
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The local geometric properties
of a smooth planar curve (fully
drawn) near a given point are
are approximated by the tangent
(large dashes) and the osculating
circle (small dashes) having the
same tangent as the curve.

f(x) coincides
near the origin with the osculat-
ing circle to second order in x.

The curve y =

A plane containing the normal in
a point of a surface intersects the
surface in a planar curve. The ex-
treme values of the signed radius
of curvature defines the principal
directions (dashed). The small
rectangle has sides parallel with
the principal directions.

5.3 Pressure discontinuity

The discontinuity in pressure across a spherical interface (5.4) is a special case of a gen-
eral law discovered by Thomas Young (1805) and Pierre-Simon Laplace (1806). The law
expresses the pressure discontinuity at a given point of an interface as the product of the local
value of surface tension and twice the mean curvature of the interface. To derive this law and
appreciate its power we need first to study some aspects of the local geometry of curves and
surfaces.

Local curvature of a planar curve

In the neighborhood of a given point P on a smooth planar curve, the behavior of the curve
can be described geometrically by a series of increasingly precise approximations. In the
first non-trivial approximation the curve is viewed as locally straight and approximated by
its tangent in P. In the second approximation, the curve is viewed as locally circular and
represented by its osculating circle in P with the same tangent as the curve. The radius R of
the osculating circle is called the radius of curvature of the curve in the point P, and the center
C which must necessarily lie on the normal to the tangent is called the center of curvature.
The curve’s curvature k in P is defined as the inverse radius of curvature, « = 1/R. As the
point P moves along the smooth curve, both the direction of the tangent and the radius of
curvature will change.

To obtain a quantitative relation between the radius of curvature and the local properties
of the curve, we introduce a local coordinate system with origin in the point P and the x-axis
coinciding with the tangent in P. In this coordinate system the curve is described by a function
y = f(x) with f(0) = f/(0) = 0, so that to second order in x we have y ~ %xzf”(O). In
these coordinates the equation for the osculating circle is x2 + (y — R)?> = R? and for small
x and y we find to leading order that y ~ %xz /R. The osculating circle coincides with the
curve f(x) to second order when its curvature equals the second order derivative in P,

1 "
=/ O (5.8)
In problem 5.10 an expression is derived for the curvature at any point along a curve where
the tangent is not necessarily parallel with the x-axis, but for now the above result suffices.

Notice that with this choice of coordinate system the radius of curvature is positive if the
center of curvature lies above the curve, and negative if it lies below. The choice of sign is,
however, pure convention, and there is no geometric significance associated with the sign of
the radius of curvature in a particular point. What is significant are the changes of sign that
may occur when comparing curvatures in different points.

Local curvature of a surface

Suppose you cut a smooth surface with a plane that contains the normal to a given point P
on the surface. This plane intersects the surface in a smooth planar curve (a so-called normal
section) with a radius of curvature R in the point P. The radius of curvature is given a
conventional sign depending on which side of the surface the center of curvature is situated.
As the intersection plane is rotated around the normal, the center of curvature moves up and
down along the normal between the two extremes of the signed radius of curvature. The
extreme radii, R; and R, are called the principal radii of curvature and the corresponding
principal directions are orthogonal.

Copyright (©) 1998-2010 Benny Lautrup



5. SURFACE TENSION

77

Figure 5.3. Soap films with zero mean curvature (Giorgio Carboni, permission to be obtained).

To prove these claims we introduce a local coordinate system with origin in P and the
z-axis along the normal to the surface in P. To second order in x and y, the most general
smooth surface is,

1 1
z=—ax?+ Eby2 +cxy, (5.9)

2
where a, b, and ¢ are constants. Introducing polar coordinates x = rcos¢ and y = rsin¢,
and using (5.8) we find the curvature of the normal section in the direction ¢,

1 9%z

= = acos® ¢ + bsin® ¢ + 2¢ sin ¢ cos .
R(¢) or? r=0

(5.10)
Differentiating with respect to ¢ we find that the extremal values are determined by tan 2¢ =
2c¢/(a — b). Assuming a # b this equation has two orthogonal solutions for ¢ = ¢o =
% arctan(2c¢/(a — b)) and ¢p = ¢ + 90°, and this proves our claim.

The Young-Laplace law

Consider now a small rectangle with sides d¢; and d{, aligned with the principal directions
in a given point of the surface, and let to begin with the principal radii of curvature, Ry and R,
be both positive. Surface tension pulls at this rectangle from all four sides, but the curvature
of the surface makes each of these forces not quite parallel with the tangent plane. In the
1-direction surface tension acts with two nearly opposite forces of magnitude ad{,, each
forming a tiny angle of magnitude %d £1/R; with the tangent to the surface in the 1-direction.
Projecting both of these forces on the normal we calculate the total force in the direction of
the center of curvature Cy as d F = 2 -ad {5 - %dﬁl/Rl = adA/R, where dA = d{;d{,
is the area of the rectangle. Dividing by d A we obtain the excess in pressure Ap = «a/R;
on the side of the surface containing the center of curvature. Finally, adding the contribution
from the 2-direction we arrive at the Young—Laplace law for the pressure discontinuity due to
surface tension,

1 1
Ap = —+—=). 5.11
P a(R1+R2) (5.11)

For the sphere with R; = R, = R we recover immediately the preceding result (5.4) .
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Pierre Simon marquis de
Laplace (1749-1827). French
mathematician, astronomer and
physicist.  Developed gravita-
tional theory and applied it to
perturbations in the planetary
orbits and the conditions for
stability of the solar system.
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Tiny rectangle aligned with the
principal directions, seen from
“above”. The sides are d£1 and
dils.

The rectangular piece of the sur-
face with sides d{{ and d{,
is subject to two tension forces
along the 1-direction resulting in
a normal force pointing towards
the center of curvature Cy. The
tension forces in the 2-direction
contribute analogously to the nor-
mal force.
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air
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water

Sketch of the spherical menis-
cus formed by evaporation of wa-
ter from the surface of a plant
leaf. Surface tension creates a
high negative pressure in the wa-
ter, capable of lifting the sap to
great heights.

John William Strutt, 3rd Baron
Rayleigh (1842-1919). Discov-
ered and isolated the rare gas Ar-
gon for which he got the No-
bel Prize (1904). Published the
influential book ‘The Theory of
Sound’ on vibrations in solids
and fluids in 1877-78.

Figure 5.4. Breakup of a water jet emerging from a vertical tube (on the left) with diameter 4 mm. The
picture has been turned 90° for graphical reasons. The jet is perturbed by the sound from a loudspeaker
with a spatial wavelength corresponding to 4.6 diameters, which is somewhat larger than the Rayleigh—
Plateau critical value of 7 diameters, but close to the wavelength of fastest breakup. Reproduced from
[RI71].

In using the Young—Laplace law it should be remembered that each contribution to the
pressure discontinuity is positive on the side of the surface containing the center of curvature,
otherwise negative. The Young-Laplace law is in fact valid if R; and R, are the radii of cur-
vature of any two orthogonal normal sections, not necessarily along the principal directions,
because it follows from eq. (5.10) that

1 1
R@) R+ 90°)

=a+b, (5.12)

which is independent of ¢. The half sum of the reciprocal radii of curvature, %(Rl_1 + R5 b,
is called the mean curvature of the surface in a given point. Soap films enclosing no air have
the same pressure on both sides, Ap = 0, implying that the mean curvature must vanish
everywhere. That does not mean that such films are planar. On the contrary, using suitable
wireframes spectacular shapes can be created (see figure 5.3).

Example 5.1 [How sap rises in plants]: Plants evaporate water through tiny pores on the
surface of their leaves. This creates a hollow air-to-water surface with radii of curvature com-
parable to the radius a of the pore. Both centers of curvature lie outside the water, leading to a
negative pressure excess in the water. For a pore of one micron diameter, 2a ~ 1 um, the excess
pressure inside the water will be about Ap = —2«//a ~ —3 atm. This pressure is capable of lifting
sap through a height of 30 m, but in practice, the lifting height is considerably smaller because of
resistance in the xylem conduits of the plant through which the sap moves. Taller plants and trees
need correspondingly smaller pore sizes to generate sufficient negative pressures, even down to
—100 atm! Recent research has confirmed this astonishing picture [Tyr03, HZ0S].

5.4 The Rayleigh—Plateau instability

The spontaneous breakup of the jet of water emerging from a thin pipe (see figure 5.4) is
a well-known phenomenon, first studied by Savart in 1833. In spite of being blind, Plateau
found experimentally in 1873 that the breakup begins when the water jet has become longer
than its circumference. The observation was explained theoretically by Lord Rayleigh in 1879
as caused by the pressure discontinuity due to surface tension. Here we shall verify Plateau’s
conclusion in a simple calculation without carrying out a full stability analysis involving the
dynamic equations of fluid mechanics (see the extensive review of liquid jets [EV08]).

Critical wavelength

Consider an infinitely long cylindrical column of incompressible liquid at rest in the absence
of gravity with its axis along the z-axis. Due to the cylindrical form, surface tension will make
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the pressure larger inside by Ap = «/a where a is its radius. This uniform pressure excess
will attempt to squeeze the column uniformly towards a smaller radius, but if the column is
infinitely long it will be impossible to move the liquid out of the way, and that allows us to
ignore this problem.

What cannot be ignored, however, are local radial perturbations r = r(z) that make the
column bulge in some places and contract in others. The amount of extra liquid to move out
of the way in response to pressure variations will then be finite. Any sufficiently small radial
perturbation can always be resolved into a sum over perturbations of definite wave lengths
(Fourier expansion), and to lowest order of approximation it is therefore sufficient to consider
a harmonic perturbation with general wavelength A and amplitude » < a of the form,

r(z) =a+ bcoskz, (5.13)

where k = 27/ is the wave number. For tiny » < a where the cylinder is barely perturbed,
the two principal radii of curvature at any z become Ry ~ r(z) = a + bcoskz and 1/R, ~
r"(z) = —bk? cos kz, the latter obtained using (5.8) . To first order in b the pressure excess
thus becomes,

(5.14)

1 1 b
Ap =a(———) ~ g+O[—2(k2az—1)coskz.
a a

where we have chosen the explicit sign of R, such that both radii curvature contribute to the
pressure excess in a bulge. The parenthesis in the last expression shows that there are now
two radically different cases, depending on whether ka is larger or smaller than unity. Since
k = 27 /A, the so-called critical value of the wavelength corresponding to ka = 1 equals the
circumference of the jet, A, = 2ma.

For ka > 1 or A < A, the pressure is higher in the bulges (coskz > 0) than in the
constrictions (cos kz < 0). Consequently, the liquid will be driven away from the bulges and
into the constrictions, thereby diminishing the amplitude b of the perturbation and thus the
pressure difference. The liquid seeks back towards the unperturbed state and the column is
therefore stable in this regime.

Conversely, for ka < 1 or A > A, the pressure is higher in the constrictions than in
the bulges, and liquid will be driven away from the constrictions and into the bulges, thereby
increasing the amplitude of the perturbation. As seen in figure 5.4, the instability leads in the
end to breakup of the column into individual drops, although this cannot be demonstrated by
analyzing only infinitesimal perturbations as we have done here.

* Breakup time scale

Although we are not in position to make a full dynamic analysis along the lines of Rayleigh
[Ray79], we shall set up an approximative dynamics that allows us to model the time evolution
of the perturbed liquid column and make a decent estimate of the characteristic breakup time
scale.

Before getting into the meat of a calculation, it is often useful to make a dimensional
analysis. From the physics of the problem we surmise that the breakup time scale t can only
be a function of the radius «, the density p and the surface tension «, i.e. T = f(a,p, ).
Since the dimension of density is kg m~ and the dimension of surface tension is kg s=2, the
ratio p/a has dimension s> m™3. To obtain a time we must multiply with the third power of
the radius a, and then take the squareroot, to get the unique form,

a3p

(5.15)
o

The only thing that is missing is the constant in front which cannot be obtained by dimensional
analysis, but requires a serious dynamical calculation.
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A harmonic perturbation r(z) =
a + b coskz of the radius of the
fluid cylinder. The amplitude b
of the perturbation is vastly exag-
gerated.

Joseph Antoine Ferdinand
Plateau (1801-1883). Belgian
experimental physicist. Cre-
ated early cinematic effects
from static images using his
“Phenakistiscope”. Studied soap
bubbles extensively. In 1829 he
stared into the Sun for 25 sec-
onds to study the aftereffects in
the eye, an experiment which he
believed lead to his total loss of
vision about 14 years later (al-
though unrelated disease may
have been the primary cause).
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An increase in the amplitude b of
the perturbation leads to a “hor-
izontal” flow towards the right
along the column axis.

Figure 5.5. The Rayleigh-Plateau instability makes it quite difficult to coat a fiber by pulling it out of a
liquid bath, even if the liquid does wet a horizontal sheet of the fiber material. Spiders use this instability
to deposit globules of glue with regular spacing on their snare lines. In the picture a film of silicone oil
deposited on a cylindrical wire breaks up in a regular pattern of beads due to the instability. In this case
the radius of the wire (0.1 mm) is so small that gravity has no influence. Reproduced from [LSQO6],
permission to be obtained.

Our dynamical approximation consists in picking a half wavelength section of the liquid
column between a minimum and maximum of the perturbation, and enclose it between solid
walls (see the margin figure). The perturbed liquid column can be viewed as consisting of
such sections. To first order in b, the volume of the liquid in half the bulge is

Al4 A4
/ big (r(z)2 — az) dz ~ 27mb/ coskzdz = abA
0 0

Since the liquid is incompressible, the whole liquid column section must simultaneously be
shifted along the axis through an distance z to build up the bulge. Equating the volume of
shifted liquid with the volume in the bulge, ma?z = abl, we get z = bl /ma.

The shift in the column section is driven by the pressure difference between minimum and
maximum

ab
8p = Apliz=n — APliz=0 = 261_2 (1 - k2a2) : (5.16)

Newton’s second law for the column section becomes Md?z/dt* = F, where M = LmaXp
is the mass of the column and F, = ma?8p is the driving force. Putting it all together we
arrive at the following equation of motion for b,
2

% = f—z with ;—2 = niapkz (1-k%a?). (5.17)
This confirms that in the unstable regime, ka < 1, the amplitude grows exponentially, b =
bo exp(t/7), from an initial amplitude bg. In the stable regime, ka > 1, it oscillates instead
harmonically.

Normally the column is perturbed by a superposition of many wavelengths, but the one
that corresponds to the smallest value of 7 will completely dominate the sum at large times
because of the exponential growth in the unstable regime. As a function of the wave number
k, the right hand side of 1/72 is maximal for k2a? = 1/2, and this shows that the minimal
breakup time scale and its corresponding wavelength are,

4a’
Tin = 1] 2P Amin = 2720 = V2 Ae . (5.18)
o

At the fastest time scale the jet is chopped into pieces of size A, which is 7 +/2 ~ 4.44 times
its diameter (Rayleigh [Ray78] obtained 4.508). This is why the jet in figure 5.4 is perturbed
harmonically with a wavelength of 4.6 diameters. In figure 5.4 the jet diameter is 4 mm,
implying Ay, = 18 mm and 7,;, = 40 ms. In problem 5.9 it is calculated that the broken
liquid column turns into spherical drops with diameter nearly double the column diameter.
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5.5 Contact angle

The two-dimensional interface between two homogeneous fluids makes contact with a solid
container wall along a one-dimensional contact line. For the typical case of a three-phase
contact between solid, liquid and gas the contact angle y is defined as the angle between the
solid and the interface (inside the liquid). Water and air against clean glass meet in a small
acute contact angle, y ~ 0°, whereas mercury and air meets glass at an obtuse contact angle
of y & 140°. Due to its small contact angle, water is very efficient in werting many surfaces,
whereas mercury has a tendency to contract into pearls.

It should be emphasized that the contact angle is extremely sensitive to surface properties,
fluid composition, and additives. This is especially true for the water-air-glass contact angle.
In the household we regularly use surfactants that diminish both surface tension and contact
angle, thereby enabling dishwater better to wet greasy surfaces on which it otherwise would
tend to pearl. Oppositely, after washing our cars we apply a wax which makes rainwater pearl
and prevents it from wetting the surface, thereby diminishing rust and corrosion.

Young’s law

The contact angle is a material constant which depends on the properties of all three materials
coming together. Whereas material adhesion can maintain a tension normal to the solid wall,
the tangential tension has to vanish at the contact line, or it will start to move. This yields an
equilibrium relation due to Thomas Young (1805)°,

Qsg = O + @ COS J, (5.19)

where g, and ay denote the solid/gas and solid/liquid surface tensions. Given the three
surface tensions, we may directly calculate the contact angle,

Osg — Og]

cos y = (5.20)

o

This expression is, however, not particularly useful because the three surface tensions are not
equally well known. As shown in the example below, estimates can sometimes be carried out
which lead to reasonable values for the contact angle. It is, however, normally better to view
x as an independent material constant that can be directly measured.

The condition for existence of an equilibrium contact angle is evidently that the cosine lies
between —1 and +1. For 0 < o, — o < o the contact angle is acute, 0 < y < 90°, and the
contact is said to be mostly wetting, while for —a < o — g < 0 the contact angle is obtuse,
90° < y < 180°, and the contact is said to be mostly non-wetting [Gennes et al. 2002]. If
on the other hand o, — g > «, the contact line cannot be static, but will be drawn towards
the gas while dragging the liquid along, and thereby spreading it all over a horizontal surface.
Such a contact is said to be completely wetting. Similarly, if oy, — g < —a, the contact is
completely non-wetting and the contact line will recede from the gas on a horizontal surface
until all the liquid collects into nearly spherical pearls (a phenomenon called dewetting).

A large amount of recent research concerns the dynamics of contact lines under various
conditions (see [Gennes et al. 2002] and [Gen85]). In the following we shall limit the analysis
to static contact lines with a well-defined contact angle.

3Sometimes this law is called the Young-Dupré law, thereby crediting the French mathematician/physicist
Athanase Dupré (1808-1869) for relating this law to the thermodynamic work function for adhesion.
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An air/liquid interface meeting
a solid wall. The upper curve
makes an acute contact angle,
like water, whereas the lower
curve makes an obtuse contact
angle, like mercury.

solid
Liquid and gas meeting at a solid
wall in a line orthogonal to the
paper. The tangential component
of surface tension along the wall
must vanish.
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N_1/h >0

L~/ <0

Top: Water rises above the ambi-
ent level in a glass tube and dis-
plays a concave meniscus inside
the tube. Bottom: Mercury sinks
below the general level in a cap-
illary glass tube and displays a
convex meniscus.

James Jurin (1684-1750). En-
glish physician. An ardent
proponent of Newton’s theo-
ries. Credited for the discov-
ery of the inverse dependence of
the capillary height on the ra-
dius of the tube in 1718, al-
though others had noticed it be-
fore [Gennes et al. 2002, p. 49].

Approximately spherical surface
with acute contact angle in a nar-
row circular tube.

Example 5.2 [Contact angle of water on ice]: An estimate of the contact angle of water
on ice at 0°C can be obtained from the latent heats of evaporation of liquid water, and from the
latent heats of melting and sublimation of ice. For liquid water the molar enthalpy of evaporation is
hevap = 45.051 kJ/mol, whereas for ice the molar enthalpy of melting is /1yej; = 6.010 kJ/mol and
the molar enthalpy of sublimation Agp = 51.059 kJ/mol [7]. Notice that hsupi = hmelt + hevap
as one would expect. Using the densities picc = 916.72 kg m™ and pywaer = 1000 kg m™>
at 0°C, we find from eq. (5.1) the following values oy = 0.138 N m~ !, ag = 0.016 Nm™!,
and @ = 0.129 Nm~!. From eq. (5.20) we estimate cos y ~ 0.95 or y ~ 19° which is quite
reasonable because the value is quoted to lie between 12° and 24° [VSMO02].

Capillary effect

Water has a well-known ability to rise above the ambient level in a narrow, vertical, cylindrical
glass tube that is lowered into the liquid. This is called the capillary effect and takes place be-
cause the surface tension of glass in contact with air is larger than that of glass in contact with
water, o > 5. The water rises to height i where the upwards force due to the difference in
surface tension balances the downwards weight of the raised water column (disregarding the
volume of the meniscus-shaped surface),

(asg — ag)2ma ~ pogoma’h. (5.21)
Using the Young law (5.19) we arrive at Jurin’s height
2
h ~ 2= cos y. (5.22)
a

where L. is the capillary length (5.5) . The height is positive for acute contact angles (y <
90°) and negative for obtuse (y > 90°). It fairly obvious that the approximation of ignoring
the shape of the meniscus is equivalent to assuming that the tube radius is much smaller than
the capillary length, @ << L.. In section 5.7 we shall determine the exact shape of the surface
meniscus for any tube radius.

For mostly wetting liquids, the rise may also be seen as caused by the acute contact angle
at the water-air-glass contact line which makes the surface inside the tube concave, such that
the center of curvature lies outside the liquid. Surface tension will create a negative pressure
just below the liquid surface, and that is what lifts the water column (as in example 5.1).
Mercury with its obtuse contact angle displays instead a convex surface shape, creating a
positive pressure jump which makes the liquid drop down to a level where the pressure just
below the surface equals the ambient hydrostatic pressure at the same level outside.

When the tube radius a is small compared to the capillary length L., gravity has no
effect on the shape, and the surface may be assumed to be part of a sphere of radius R. The
geometric construction in the margin figure yields the tube radius @ &~ R cos y and the central
depth d ~ R(1 — sin y). Eliminating R we obtain,

o
d~a—20X (5.23)

cos x

Both the capillary depth and the capillary height are as mentioned modified for larger radius,
a 2 L., where the surface flattens in the middle.

Example 5.3: A certain capillary tube has diameter 2a = 1 mm. Water with y ~ 0° and

L, =~ 2.7 mm rises to & = +30 mm with a surface depth d = +0.5 mm. Mercury with
contact angle y =~ 140° and L, = 1.9 mm sinks on the other hand to # = —11 mm and depth
d = —0.2 mm under the same conditions.

Copyright (© 1998-2010 Benny Lautrup



5. SURFACE TENSION

83

Figure 5.6. Spider walking on water. This is also an effect of surface tension. Image courtesy David
L. Hu, MIT (see also [HCBO3] for analysis of the physics of water striding).

Case: Walking on water

Many species of animals—mostly insects and spiders— are capable of walking on the surface
of water (see figure 5.6 and the comprehensive review [BHO6b]). Compared to the displace-
ment necessary to float, only a very small part of the water-walking animal’s body is below
the ambient water surface level. The animal’s weight is mostly carried by surface tension
while buoyancy — otherwise so important for floating objects — is negligible.

The water is deformed by the animal’s weight and makes contact with its “feet” along a
total (combined) perimeter length L. The animal must somehow “wax its feet” to obtain an
obtuse contact angle y > 90° so they avoid getting wet. In a given contact point, the angle
between the tangent to the “foot” and the undeformed water surface is denoted 6 (see the
margin figure). For simplicity we shall assume that this angle is the same everywhere along
the perimeter curve. Surface tension acts along the tangent to the deformed water surface and
simple geometry tells us that the angle of this force with the vertical is = 90°—6+180°—y.
Projecting the surface tension on the vertical, we obtain the following condition for balancing
the animal’s weight,

aLl cosyr = Mgy. (5.24)
The ratio between the weight and surface tension force is called the Bond number,
M
Bo = 80 (5.25)
ol

where M is the mass of the animal. If Bo < 1 surface tension is capable of carrying the weight
of the animal with and angle determined by cos ¥ = Bo. If Bo > 1 this is not possible, and
the animal literally falls through. The reciprocal number Je = 1/Bo which must be larger
than unity for anyone who wants to walk on water has — with tongue in cheek — been called
the Jesus number [Vogel 1988].

An insect with mass M = 10 mg requires the total length L of the contact perimeter to
be larger than 1.3 mm to make Bo < 1. Heavier animals need correspondingly larger feet.
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Geometry of water-walking with
a contact line through C. The arc
on the left represents the “foot”,
and the curve on the right the

deformed water surface. The
contact angle is y and the an-
gle between the tangent and the
horizontal undeformed water sur-
face (dashed) is 6. Surface ten-
sion acts along the tangent (dot-
ted) to the deformed water sur-
face. Its projections on the ver-
tical (dashed) through the angle
¥ must add up to the animal’s
weight.
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The geometry of a planar ori-
ented curve. The curve is param-
eterized by the arc length s along
the curve. A small change in s
generates a change in the eleva-
tion angle 6 determined by the lo-
cal radius of curvature. Here the
radius of curvature is positive.

5.6 Meniscus at a flat wall

Even if the capillary effect is best known from cylindrical tubes, any fluid interface will take
a non-planar shape near a solid wall where the interface rises or falls relative to the ambient
horizontal fluid level. The crescent shape of the interface is called a meniscus. A vertical flat
wall is the simplest possible geometry, and in this case there is no capillary effect because the
interface must approach the ambient level far from the wall. Taking the x-axis horizontal and
the z-axis vertical, the meniscus shape may be assumed to be independent of y and described
by a simple planar curve z = z(x) in the xz-plane.

The height at the wall

The meniscus height d at the wall can be calculated exactly by balancing the external hori-
zontal forces acting on the fluid (see the margin figure). Far from the wall for x — oo the
force (per unit of y) is just & whereas at the wall for x = 0 there is the wall’s reaction « sin y
to the pull from the surface itself plus its reaction to the hydrostatic pressure exerted by the

fluid, fod pogozdz = % pogod?. The equation of balance thus becomes

) 1
osin y + zpogodz =a,

which yields

90° —
d = Lc.+/2(1 —siny) = 2L, sin — (5.26)

Although derived for acute contact angles, the last expression is also valid for obtuse angles. It
should be emphasized that this is an exact result. For water with y ~ 0 we find d ~ /2L, ~
3.9 mm, whereas for mercury with y = 140° we getd ~ —1.6 mm.

Geometry of planar curves

The best way to handle the geometry of a planar oriented curve is to introduce two auxiliary
parameters: the arc length s along the curve, and the elevation angle 6 between the x-axis
and the oriented tangent to the curve. Due to the monotonic increase of arc length as a point
moves along the oriented curve, it is mostly convenient to parameterize the curve by means
of the arc length, 6 = 6(s), x = x(s), and z = z(s).

A small increment s — s+ ds in the arc length moves the point (x, z) an amount (dx, dz)
along the tangent, and we obtain immediately from the definition of €, and the fact that ds =
RdO,

dx P dz 0 do 1 597
ds—cos, ds—sm, IR (5.27)
If the elevation angle 6 is an increasing function of the arc length s, the radius of curvature
R must be taken to be positive, otherwise negative. One should be aware that this sign con-
vention may not agree with the physical sign convention for the Young—Laplace law (5.11) .
Depending on the arrangement of the fluids with respect to the interface, it may — as we shall
now see — be necessary to introduce an explicit sign to get the physics right.
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The meniscus equation

To obtain an expression for the geometric radius of curvature we employ hydrostatic balance
at every point of the meniscus. For simplicity we assume that there is air above the liquid and
that the air pressure on the interface is constant, p = po. Then the pressure in the liquid just
below the surface is p = po + Ap where Ap is given by the Young-Laplace law (5.11) .
In terms of the local geometric radius of curvature R, we have for an acute angle of contact
R; = —R because the center of curvature of the concave meniscus lies outside the liquid.
The other principal radius of curvature is infinite, R, = oo, because the meniscus is flat in
the y-direction.

The pressure just below the surface, p = po — a/R, is always smaller than atmospheric.
Since surface tension does not change the equation of hydrostatic equilibrium, the pressure in
the liquid will — as in the sea (page 22) — be constant at any horizontal level z, and given by
P = po — Pogoz Where py is the ambient pressure. Just below the surface z = z(s) we have,

o
Po = PogoZ = po— & (5.28)
and using this equation to eliminate 1/ R we obtain from (5.27)
do z
=, 5.29
ds L2 (529)

where we have also introduced the capillary length L. defined in eq. (5.5) . Differentiating
the above equation once more with respect to s and making use of (5.27) , we obtain

d?0
N

This second order ordinary differential equation for the planar meniscus is expressed entirely
in the elevation angle 6 = 6(s).

Pendulum connection: The meniscus equation (5.30) is nothing but the equation for an
inverted mathematical pendulum. A mathematical pendulum of length £ and unit mass obeys
Newton’s second law in a constant field of gravity g (see the margin figure),

d2
K% = —gsing.

Taking ¢ = 180° — 0 andt = /{/g = s/L. we arrive at the meniscus equation. Although it is
amusing to translate the solutions to the meniscus equation into pendulum motions, we shall not
exploit this connection further here.

Analytic solution

Since L. is the only length scale in the problem we may without loss of generality take
L. =1, so that all lengths are measured in units of L.. Multiplying the meniscus equation
(5.30) with d8/ds, its first integral becomes

1 (do)?
3 (%) =1-—cosb. (5.31)
The constant on the right hand side has been determined from the conditions that 8 — 0 and
df/ds — 0 for s — oo. From this equation we get

do 0
— = /2(1 —cosf) = —2sin 0 (5.32)

ds

where we have used that the contact angle is acute so that d8/ds > 0 and 6 < 0 (see the
margin figure).
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A mathematical pendulum. The
angle ¢ is measured from stable
equilibrium ¢ = 0. The elevation
angle is 6 = 180° — ¢.

z

= X
\

Geometry of single plate menis-
cus for acute contact angle y <
90°. The elevation angle 6 is al-
ways negative with initial value
6o = y — 90° at the wall for
s = 0. The other initial values
arex =0,z =d fors = 0.
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Figure 5.7. Flat-wall meniscus (in units of L, = 1) for all contact angles in steps of 10°. Close to the
wall the menisci are linear and far from the wall they approach the x-axis exponentially.

Combining this equation and (5.27) we obtain, using well-known trigonometric relations,

dx 0 1 dz
— =i , — = —cos <. 5.33
70 sm2 ZSin% 70 cos2 ( )
Finally integrating these equations we get the meniscus shape in parametric form,
0 6 0
szCos?O—Hog tanTO’—Zcosz—log tanz', z:—ZSinE. (5.34)

The integration constant is chosen such that x = 0 for § = 6y = y — 90° and z — 0 for
6 — 0. The solution is valid for both acute and obtuse contact angles, and is plotted in figure
5.7 for a selection of contact angles.

At the wall the meniscus height becomes

90° —
d = z(0p) = 2sin 3 X,

(5.35)

which is identical to the earlier result (5.26) . Far from the wall for 6 — 0, we have x ~
—1log|0/4| and z ~ —6, so that

7~ e, (5.36)

The meniscus decays exponentially with a sign depending on whether the contact angle is
acute or obtuse.
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Figure 5.8. Meniscus and capillary effect in “water” with y = 1° for a cylindrical tube of radius
a in units where L, = 1. (a) Meniscus shape z(r)/a plotted as a function of r/a for a — 0 and
a = 1,2,3,5,8. Note how the shape is nearly spherical for a < 1 and essentially independent of a.
(b) Computed capillary height 4 and depth d as functions of a (solid lines). The dashed curves are the
meniscus estimates (5.42) .

5.7 Meniscus in cylindrical tube

Many static interfaces, for example the meniscus in a cylindrical tube but also droplets and
bubbles are invariant under rotation around an axis, allowing us to establish a fairly simple
formalism for the shape of the interface, similar to the two-dimensional formalism of the
preceding section.

Geometry of axial surfaces

In cylindrical coordinates an axially invariant surface is described by a planar curve in the
rz-plane. Using again the arc length s along the curve and the angle of elevation 6 for its
slope, we find as in the planar case,

dr dz .
o= cos 0, = sin 6. (5.37)

The first principal radius of curvature may be directly taken from the two-dimensional case,
whereas it takes some work to show that the second center of curvature lies on the z-axis (see
problem 5.3), such that the radial distance becomes r = R; sin 6, so that

do 1 sin 6 1 (5.38)
dS_Rl’ r _Rz. ’

Since R5 is known as a function of 6 and r, we just need an expression for Ry = Ry(r,z,0,s)
to close this set of equations.
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The oriented curve is parameter-
ized by the arc length s. A small
change in s generates a change in
the elevation angle 6 determined
by the local radius of curvature
Ry with center C1. The second
radius of curvature R; lies on the
z-axis with center C (see prob-
lem 5.3).
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liquid

Meniscus with acute angle of
contact. Both centers of curva-
ture lie outside the liquid.

Alternatively one may use the Young-Laplace expression (5.11) for the mean curvature,

df  sinf 1 1 Ap
- = — 14 — = =, 5.39
ds + r R + R> o ( )

As before, one should keep in mind that the sign convention for the geometric radii of curva-
ture may not agree with the physical sign convention for the Young—Laplace law (5.11) , and
that one must be careful to get the sign of Ap right.

A special class of solutions is given by the open soap film surfaces with vanishing mean
curvature, Ap = 0, as seen in figure 5.3. Their shapes are entirely dependent on the boundary
conditions provided by the the stiff wire frames used to create and maintain them. There is
essentially only one axially symmetric shape namely the one in figure 5.3a (see problem 5.13).

Numeric solution

For the liquid/air meniscus with acute contact angle the geometric radii of curvature are pos-
itive, and since both centers of curvature lie outside the liquid, the pressure will be larger
outside than inside. For convenience we choose the ambient liquid level to be z = —h where
h is the (so far unknown) capillary height in the center of the tube. The pressure in the liquid
is p = po — pogo(z + h) where py is the atmospheric pressure. The pressure jump from
liquid to atmosphere therefore becomes

Ap = po—p = pogo(z + h) (5.40)

We have now obtained a closed set of three first-order differential equations for r, z and 0 as
functions of the arc length s.

Unfortunately these equations cannot be solved analytically, but given a value for the
radius a and the contact angle y they may be solved numerically as a boundary value problem
in the interval 0 < s < 5o with the boundary conditions

r=0, z =0, 0 =0, (s > 0) (5.41a)
r=a, z=d, 0 =90° —y, (s = s0) (5.41b)

where d, h, and s¢ are unknown. Integrating, one obtains not only the functions r(s), z(s)
and 6(s), but also the values of the unknown parameters /, d and s¢. The numeric solutions
for the menisci in water with y & 0 are displayed in figure 5.7a for a selection of values of
the radius a.

The corresponding capillary height 4 and depth d are shown as functions of a in fig-
ure 5.7b, and are compared with the small and large a approximations already obtained in
(5.22),(5.23),(5.36) and (5.26),

L2 1 —si
h ~2——<cosy, d~ag—2X for a < 1. (5.42a)
a cos y
—a/L¢ . 90° — X
h~ £4L_.e ‘, d ~ 2L, sin 5 for a > 1. (5.42b)

In (5.36) have replaced z by & and x by a to get an estimate of the central height /. As seen
from figure 5.7b, these approximations fit the numeric solutions quite well in their respective
regions.
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Figure 5.9. Shapes of sessile liquid droplets in air (a) , and captive air bubbles in the same liquid (b) .
The contact angle is obtuse in both cases, y = 140° (mercury). For the complementary contact angle
x = 40°, the picture is simply turned upside down with the flat shapes on the top and the rounded ones
on the bottom. All lengths in the figure are measured in units of the capillary length L.

* 5.8 Sessile drops and captive bubbles

Everyone is familiar with drops of liquid sitting stably (i.e. sessile) on top of a horizontal
surface. Small droplets tend to be spherical in shape, but gravity flattens larger drops into
puddles when their size exceeds the capillary length. On a wetting surface where the contact
angle is tiny, water droplets are always quite flat and tend to spread out into thin layers.
Mercury on the other hand with its obtuse contact angle of 140° against many solid surfaces is
seen to form small, nearly spherical droplets. Larger mercury drops tend to form puddles that !
likewise can be hard to keep in place. The ‘quickness’ of mercury (also known as quicksilver) hp--eeeeo-
is mainly due its high density which makes gravity easily overcome surface adhesion, if for
example the horizontal surface is tilted a tiny bit.

Sessile drops

The coordinate system is chosen so that the plate surface is given by z = 0 (see the margin
figure). Both centers of curvature lie inside the liquid so that the pressure is everywhere higher
in the liquid than in the atmosphere. The pressure in the liquid is hydrostatic p = p; — pogoz
where p; is the pressure at z = 0. Since the geometric radii of curvature are positive with  Geometry of sessile drop on a
the indicated orientation of the curve, the pressure jump is in this case the difference between horizontal plate. The contact an-
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liquid and atmospheric pressure, gle y is here obtuse (as for mer-
cury), the circular contact area

Ap = p—po = p1— Po—pogoz = pogo(h — z). (5.43)  (the droplet’s “footprint’) has ra-

dius a, and the central height of

Here we have defined the height & by setting p1 — po = pogoh. Since the radii of curvature ~the dropletis d.

are always positive, we must have & > d such that the even the pressure on the top of the
droplet at z = d is always higher than atmospheric.

The solution of the three coupled first-order differential equations (5.37) and (5.39) now
proceeds as in the preceding section. The boundary conditions are in this case

r=a, z =0, 0 =180° — y (s =0), (5.44a)
r=0, z=d, 6 = 180° (s = s0). (5.44b)

Given the ‘“footprint’ radius a and the contact angle y, the droplet shapes and the unknown
parameters d, h, and so can be determined. The droplet shapes are shown in figure 5.9a for a
choice of footprint radii and an obtuse contact radius y = 140°, corresponding to mercury on
glass.
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AN AR
air liquid
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Captive air bubble under a hori-
zontal lid in a liquid with acute
angle of contact, for example in
water.

z wall

liquid air

—d

A liquid drop hanging from a
tube with strongly exaggerated
wall thickness. Any true con-
tact angle can be accommodated
by the 180° turn at the end of
the tube’s material. The apparent
contact angle y between the lig-
uid surface and the horizontal can
in principle take any value.

For a <« L. the droplet is spherical while for a > L. it becomes a flat puddle (see
figure5.9a). Estimating in the same way as before (see problem 5.5) we find
1 —cos
d ~ a_—X for a < L., d ~ 2L, sinl for a > L.. (5.45)
sin y 2
Mercury with y = 140° has maximal puddle height d ~ 1.88L. in close agreement with
figure 5.9a. Water on a wetting surface with y ~ 1°, has maximal puddle heightd ~ L.y ~
50 um. A bucket of water thrown on the floor really makes a mess.

Captive bubbles

Air bubbles may similarly be captured on the underside of a horizontal lid covering a liquid. In
this case it is the buoyancy forces that press the bubble against the lid. If the bubble footprint
is not too much smaller than the capillary length, there is only little compression of the air
from surface tension, although there may be some overall compression due to the ambient
hydrostatic pressure in the liquid at the bubble’s level. Since the density of the air is normally
much smaller than the density of the liquid, we may take the air pressure to be effectively
constant, pj, in the bubble. With the orientation of the margin figure both geometric radii
of curvature are negative, implying that in this case Ap should be the pressure difference
between liquid and gas which is also negative. The pressure in the liquid is p = po — pogoz,
where py is the pressure just under the lid, so that the pressure discontinuity between liquid
and gas becomes

Ap = p—p1 = po— p1—pogoz = —pogo(z + h), (5.46)

In the last expression we have introduced an artificial “height” & through p; — po = pogoh.
This defines the level z = —h where the pressure jump would vanish. Since the pressure
discontinuity between liquid and gas is always negative, we must have 7 > d where d is the
height of the bubble.

The transformations (r,z,0) — (r,—z,—0) and Ap — —Ap leave eqgs. (5.37) and
(5.39) invariant. The bubble shapes may for this reason be obtained from the drop shapes
provided one replaces the contact angle by its complement, y — 180° — y. The bubble
shapes are also shown in figure 5.9 below the horizontal line.

*5.9 Pendant drops and tethered bubbles

Whereas sessile drops in principle can have unlimited size, pendant (hanging) liquid drops
will detach and fall if they become too large. Likewise, air bubbles tethered to a solid object
in a liquid will detach and rise if they grow too large. Here we shall only discuss pendant
drops because the shapes of tethered bubbles are complementary to the shapes of pendant
drops (like captive bubbles are complementary to sessile; see the preceding section). Drops
can hang from all kinds of objects. Under a flat, horizontal plate drops may, for example, form
from condensation. In that case the constraint is that the liquid has to have the correct contact
angle with the plate.

A drop may also hang from the tip of a vertical capillary tube, for example a pipette fitted
with a rubber bulb, through which liquid can be slowly injected to feed it. If the feeding rate is
slow enough, the drop will grow through a sequence of equilibrium shapes with continuously
increasing volume until it becomes unstable and detaches. The advantage of this arrangement
is that the rounded end of the tube can accommodate any contact angle (see the margin figure).
The constraint is in this case that all drop shapes must have the same footprint radius. We shall
for simplicity also assume that the tube wall has vanishing thickness and that the three-phase
contact line is fixed at the tip of the tube. The actual dynamics of the detachment of the drop
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Figure 5.10. Two sets of static drop shapes hanging from the mouth of capillary tube with radius
a = 0.5 and a = 1.5, respectively (in units where L, = 1). For each set there is no static solution
with larger volume than shown here, which indicates the limit to the size of the static shapes that can be
created by slowly feeding the drops through the tubes.

is highly interesting, but cannot be studied within the hydrostatic framework of this chapter
(see however [Egg97, WPB99]).

Tate’s Law

The naive reason that a pendant droplet can be in stable equilibrium is that surface tension
o pulls so strongly upwards at the rim of the tube that it overcomes the weight of the drop.
Denoting the capillary tube radius by a and the angle between the liquid surface and the
horizontal by y, this condition becomes

Mgy < 2maasin g, (5.47)

where M is the total mass of the drop. For the capillary, the right hand side is maximal for
x = 90°, so that the drop should detach when the mass satisfies,

Mgy =2maa. (5.48)

This is Tate’s law from 1864 [Tat64]. It provides a simple method for measurement of surface
tension because the mass of a drop can be determined by weighing the liquid accumulated by
many drops. There are of course corrections to this simple expression, the main being that
only part of the liquid in a pendant drop actually detaches (see [YXBO05]).

The mass of a drop can actually be determined from the balance of forces at z = 0,

Mgy = 2maa sin y — wa®Apy. (5.49)

On the left we have the weight of the drop and on the right the total force due to surface
tension minus the force due to the pressure excess Apy in the liquid at z = 0. In problem 5.4
it is shown that this is an exact relation, derivable from the differential equations. Notice that
the inequality (5.47) corresponds to Apy > 0, implying that the pressure should be above
atmospheric at z = 0 for the inequality to hold. Tate’s Law implies that the drop detaches
when y = 90° and the pressure excess vanishes, Apg = 0.
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Slowly fed pendant drop. Images
courtesy Anders Andersen, Tech-
nical University of Denmark.
Top: Typical shape similar to the
static ones in figure 5.10. Mid-
dle: Stretching the neck. Bot-
tom: The moment of detachment.
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Figure 5.11. Drop parameters for the capillary with footprint radius a = 0.5 pictured in figure 5.10.
All quantities are plotted in units where L, = 1. Notice that the volume has a maximum as a function of
depth at d = 2.154 ..., which marks the limit to the static shapes that can be created by slowly feeding
the drop through the capillary.

Numeric solution

The pressure excess in the liquid takes the same form as before

Ap = pogo(h —z) (5.50)

where z = h is the height at which the liquid pressure equals the atmospheric. The solution of
the three coupled first-order differential equations, (5.37) and (5.39) , proceeds as previously
with the boundary conditions

r=0, z =—d, 6 =0 (s =0), (5.51a)
r=a, z =0, 0=y (s = 59). (5.51b)

Since there is no constraint on the angle y, one may specify the depth d and the radius a,
leaving h, y and s¢ as unknowns.

In figure 5.10 two sets of solutions are shown for a capillary tubes with radii a = 0.5
and a = 1.5 in units where L, = 1. The solution are parameterized by the depth d. The
shapes with d = 2.154...and d = 2.631... are limiting cases, and although there are static
solutions with larger values of d, they have smaller volumes and cannot be reached by feeding
the drop through the tube. They must for this reason be unstable even if they are static. In
figure 5.11 the parameters for the a = 0.5 set of pendant drop shapes are shown as a function
of depth.

At z = 0 we have Ap = pogoh, implying that we must have # > 0 to obtain the naive in
equality (5.47) . This is in fact the case for all the shapes shown in figure 5.10 for a = 0.5,
whereas the largest shape for a = 1.5 has & = —0.27, such that part of the drop’s weight is
carried by the negative pressure excess z = 0. Negative pressure excess, which by the Young-
Laplace law is the same as negative mean curvature, can only occur if the first principal radius
of curvature R; becomes negative at z = 0, which it is also seen to be the case in the figure.
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Problems

5.1 A soap bubble of diameter 6 cm floats in air. What is the pressure excess inside the bubble when
the surface tension between soapy water and air is taken to be @ = 0.15 N m~!? How would you define
the capillary length in this case, and how big is it? Do you expect the bubble to keep its spherical shape?

5.2 (a) Calculate the leading order change in area and volume of a column of incompressible fluid
subject to an infinitesimal radial periodic perturbation with wavelength A. (b) Show that the Rayleigh—
Plateau stability condition is equivalent to the requirement that the area should grow for fixed volume.
Instability occurs when the area diminishes.

# 5,3 Determine the radii of curvature in section 5.7 by expanding the shape z = f(r) with r =
v/x2 + y2 to second order around x = xg, y = 0, and z = zg.

#5.4 Show that the volume of a pendant droplet is V = fi)d nr?dz = 2wal?sin y — wa?h.
5.5 Show that eq. (5.45) can be derived from a simple model, just as in section 5.6.

5.6 Show that the condition that the condition for gravity on the air in a soap bubble to be negligible is
that its radius satisfies 2a < ho where hg = po/pogo = 8.4 km is the scale height of the atmosphere.

5.7 Show that the radial component of gravity adds a correction to the difference in air pressure Ap =
Pinside — Poutside
4o
Ap = R + p1hgocos O (5.52)

and estimate the size of the radial change.

5.8 Show that the Bond number (5.7) can be written as the ratio of the weight of the bubble and the
force due to surface tension acting on its equator.

5.9 Calculate the size of the spherical drops that arise when a liquid column breaks up (assume that
the fastest breakup yields one drop for each wavelength).

5.10 (a) Show that for a general curve y = y(x) the radius of curvature is

1 ¥ (x)

=—3 (5.53)
[1+y'(x)?]?
(b) Show that for a general curve x = x(y) the radius of curvature is
1 "
== . ) (5.54)
[1 + x/(y)z] 2
5.11 Calculate the force per unit of length that the planar meniscus exerts on the vertical wall.
5.12 (a) Show that for a general curve z = z(r) we have
1 " 1 /
1 z"(r) - 2o z'(r) (5.55)
Ry [1 + z’(r)z]i Ry 7 /1+:z/(r)?
(b) Show that for a general curve r = r(z) we have
1 " 1 1
1@ LI S (5.56)
Ry [1+r()2]2 Ry r(2)y/1+1'(2)2
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5.13 Consider the zero mean curvature soap film in figure 5.3a. Show that the shape is given by,
z
r = acosh — (5.57)
a
with suitable choice of @ and origin of z.

5.14 Assume that the pendant drop is spherical. Use Tate’s law to obtain an approximate expression
for its radius R when it detaches and falls.
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