KINETIC THEORY
 OF GASES

县Assumptions:

- The gases are atoms/molecules that do-not have volumes/cross-sectional areas
- The gas molecules are moving at candom and in straight lines
- The gas molecules do not interact with each other except in collisions - elastic

磒Pressure vs speed

- Pressure of a gas is the outcome of the elastic collision of molecules against the wall of the container.

Speed of a molecule of gas, v :

- related to its component velocities in the x , y , and z directions $-\mathrm{v}_{\mathrm{x}}, \mathrm{v}_{\mathrm{y}}, \mathrm{v}_{\mathrm{z}}$
$v^{2}=v_{x}^{2}+v_{y}^{2}+v_{z}^{2}$
or $v=\left(v_{x}{ }^{2}+v_{y}^{2}+v_{z}^{2}\right)^{1 / 2}$

Average speed :
$v^{2}=v_{x}^{2}+v_{y}^{2}+v_{z}^{2}=\frac{v_{i}{ }^{2}}{N^{2}}$
$\mathrm{N}=$ no. of molecules
Assumming $\mathrm{v}_{\mathrm{x}}{ }^{2}=\mathrm{v}_{\mathrm{y}}{ }^{2}=\mathrm{v}_{\mathrm{z}}{ }^{2}$

$$
v^{2}=3 v_{x}^{2} \quad v_{x}^{2}=1 / 3 v^{2}
$$

Derivation for pressure :

Assuming a) gas molecule with mass m, moving in a cube with velocity v_{x} along the x axis The molecule hits the wall and bounces with a velocity $-\mathrm{v}_{\mathrm{x}}$.

Change in momentum for one collision :

$$
\mathrm{mv}_{\mathrm{x}}-\left(-\mathrm{mv}_{\mathrm{x}}\right)=2 \mathrm{mv}_{\mathrm{x}}
$$

and according to $2^{\text {nd }}$ Newton law :
$\mathrm{F}=$ Change in momentum
Time
$=\frac{2 \mathrm{mv}_{\mathrm{x}}}{\mathrm{t}}$
$=\frac{2 \operatorname{mv}_{\mathrm{x}}}{2 \mathrm{l}}{ }^{2}$
$=\frac{\operatorname{mv}_{\underline{x}}}{1}$
$P=\frac{F}{A}=\frac{\mathrm{mv}_{\mathrm{x}}{ }^{2}}{\mathrm{l}^{3}}=\frac{\mathrm{mv}_{\mathrm{x}} \underline{\mathrm{x}}^{2}}{\mathrm{~V}}$
Assuming the cube has N molecules of gas and collisions are with an average velocity $\mathrm{v}_{\mathrm{x}}, \mathrm{v}_{\mathrm{z}}$, v_{z} along the respective axes,
$P_{x}=\frac{\mathrm{Nmv}_{\underline{x}}^{2}}{\hat{\mathrm{~V}}}{ }^{2} ; \quad P_{y}=\frac{\mathrm{Nmv}_{\mathrm{y}}}{\mathrm{V}} ; \quad \mathrm{P}_{\mathrm{z}}=\frac{\mathrm{Nmv}_{\underline{z}}^{2}}{\mathrm{~V}}$
Since $v_{x}{ }^{2}=v_{y}^{2}=v_{z}^{2}=1 / 3 v^{2}$ and $\mathrm{P}_{\mathrm{x}}=\mathrm{P}_{\mathrm{y}}=\mathrm{P}_{\mathrm{z}}=\mathrm{P}$
$\mathrm{P}=\mathrm{Nmv}^{2}$

$$
\begin{gathered}
3 \mathrm{~V} \\
\mathrm{PV}=\underline{1} \mathrm{Nmv}^{2} \\
3
\end{gathered}
$$

$$
\text { or } \mathrm{PV}=\frac{1}{3} \mathrm{nMv}^{2}
$$

where $\mathrm{n}=\mathrm{N} / \mathrm{N}_{\mathrm{A}}$ and $\mathrm{M}=\mathrm{mN} \mathrm{N}_{\mathrm{A}}=$ molarmass.

盢 Average kinetic energy

For 1 molecule: $e_{k}=\underline{1} \mathrm{mv}^{2}$
2
For N molecule $E_{k}=\frac{1}{2} \mathrm{Nmv}^{2}$
For N_{A} molecule: $\mathrm{E}_{\mathrm{k}}=\frac{1}{2} \mathrm{~N}_{\mathrm{A}} m v^{2}=\frac{1}{2} \mathrm{Mv}^{2}$

Pressure vs kinetic energy

$$
\begin{aligned}
\mathrm{PV} & =\frac{1}{3} \mathrm{Nmv}^{2} \\
& =\frac{2}{3} \quad \frac{1}{2} \mathrm{Nmv}^{2}
\end{aligned}
$$

$$
P V=\frac{2}{3} E_{k}
$$

For an ideal gas, $\mathrm{PV}=\mathrm{nRT}$

$$
\mathrm{nRT}=\underline{2} \mathrm{E}_{\mathrm{k}}
$$

$$
\text { or } \mathrm{E}_{\mathrm{k}}=\underline{3} \mathrm{nRT}
$$

$$
2
$$

MAXWELL DISTRIBUTION
 OF SPEEDS

E/kT

Maxwell-Boltzm Normalization

 constant AThe probability for occupying a given energy state decreases expcnentially with energy

Boltzmann's constant k times the absolute temperature T . The implication of this term is that for a higher temperature, it is more probable that a given particle can be found with energy E .

The Maxwell-Boltzmann distribution of molecular velocities :

$$
f\left(v_{x}\right)=\left(\frac{\mathrm{m}}{2 \pi \mathrm{kT}}\right)^{1 / 2} e^{-\frac{\mathrm{mv}_{\mathrm{x}}^{2}}{2 \mathrm{kT}}}
$$

The probability density for therelocity vector is the product of the probability densities in the three directions :

$$
f\left(v_{x}, v_{y}, v_{z}\right)=f\left(v_{x}\right) f\left(x_{y}\right) f\left(v_{z}\right)=f(v)
$$

The probability $\mathrm{F}(\mathrm{v}) \mathrm{dv}$ that a molecule has a speed between v and $v+d v$ is given by the probable no. of points in a spherical shell of thickness $d v$ and is given by :

$$
\mathrm{F}(\mathrm{v}) \mathrm{dv}=4 \pi \mathrm{v}^{2}\left(\frac{\mathrm{~m}}{2 \pi \mathrm{kT}}\right)^{3 / 2} \exp \left(-\frac{\mathrm{mv}^{2}}{2 \mathrm{kT}}\right) \mathrm{dv}
$$

where $\mathrm{F}(\mathrm{v}) \mathrm{dv}=\frac{\mathrm{dN}}{\mathrm{N}}$

The probability density $f(v)$ for Maxwelb distribution of speeds is :

$$
\begin{aligned}
& \mathrm{F}(\mathrm{v}) \mathrm{dv}=4 \pi \mathrm{v}^{2}\left(\frac{\mathrm{~m}}{2 \pi \mathrm{kT}}\right)^{3 / 2} \exp \left(-\frac{\mathrm{mv}^{2}}{2 \mathrm{kT}}\right) \mathrm{dv} \\
& \mathrm{~F}(\mathrm{v}) \mathrm{dv}=4 \pi \mathrm{v}^{2}\left(\frac{\mathrm{M}}{2 \pi \mathrm{RT}}\right)^{3 / 2} \exp \left(-\frac{\mathrm{Mv}^{2}}{2 \mathrm{RT}}\right) \mathrm{dv}
\end{aligned}
$$

where $f(v)=\frac{d N / N}{d \mathrm{dv}}$
m is mass of 1 molecule $\left(\mathrm{m}=\mathrm{M} / \mathrm{N}_{\mathrm{A}}\right)$, $\mathrm{k}=$ Botlzmann constant $=1.381 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$ or $k=R / N_{A}$

Speed distribution of gas molecules

- $F(v)$ increases with speed up to a max. then declines.
- The probability that a molecule has a speed between any two values is given by the area under the curve.
- Very few molecules have very high or very low speeds.
- The most probable speed increases with temperature and decrease in molar massthe curve gets wider.

TYPES OF AVERAGE SPEEDS

- The most probable speed, v_{mp} is the speed at the maximum of $f(v)$.

Setting $\mathrm{dF}(\mathrm{v})=0$ dv

$$
\mathrm{v}_{\mathrm{mp}}=\left(\frac{2 \mathrm{RT}}{\mathrm{M}}\right)^{1 / 2 \mathrm{O}}=\left(\frac{2 \mathrm{kT}}{\mathrm{~m}}\right)^{1 / 2}
$$

The mean speed, v is calculated as the average of v using the probability distribution $\mathrm{f}(\mathrm{v})$ -

$$
\overline{\mathrm{v}}=\int_{0}^{\infty} \mathrm{v} F(\mathrm{v}) \mathrm{dv}
$$

$$
\overline{\mathrm{v}}=\left(\frac{8 \mathrm{RT}}{\pi \mathrm{M}}\right)^{1 / 2}=\left(\frac{8 \mathrm{kT}}{\pi \mathrm{~m}}\right)^{1 / 2}
$$

The root-mean-square speed, $\left(v^{2}\right)^{1 / 2}$ is the square root of $\left(\mathrm{v}^{2}\right)$

$$
\left(v^{2}\right)^{1 / 2}=\left[\int_{0}^{\infty} v^{2} F(v) d v\right]^{1 / 2}
$$

$$
v_{\mathrm{rms}}=\left(\mathrm{v}^{2}\right)^{1 / 2}=\left(\frac{3 R T}{M}\right)^{1 / 2}\left(\frac{3 k T}{m}\right)^{1 / 2}
$$

$$
f(v)=4 \pi\left[\frac{M}{2 \pi R T}\right]^{\frac{3}{2}} v^{2} \exp \left[\frac{-M v^{2}}{2 R T}\right]
$$

COLLISION FREQUENCY OF GASES

- Relates the kinetic behaviour of gases, e.g. flux, diffusion rate, viscosity
- Formulation of collision theories of ehemical reactions

唒Assumptions :

- Hard spheres
- Molecules collide -centers within distance d equal to their diameters if the molecules are alike or $d_{12}=1 / 2\left(d_{1}+d_{2}\right)$ if they are different.

$$
d=\text { collision diameter. }
$$

The effective collision area is $A=\pi d^{2}$

$n_{V}=$ molecules per unit volume

- Unimolecule collision

Collision frequency $=$ no. of collision per unit time

-no. of molecules in cylinder
= volume of cylinder x molecule density
where volume of cylinder $=\pi d_{1} \mathrm{v}_{1} \Delta \mathrm{t}$ molecule density $\rho=\mathrm{N} / \mathrm{V}$

In 1 second, no. of molecules in cylinder $=\pi d_{1} \mathrm{v}_{1} \rho$
no. of molecules in cylinder $=\pi d_{1}{ }^{2} \quad 2 \mathrm{v}_{1} \rho$
Collision frequency $\mathrm{z}_{1}=2 \pi d_{1}{ }^{2} \mathrm{v}_{1} \rho$
$\rho=\frac{\mathrm{N}}{\mathrm{V}}=\frac{\mathrm{nN}_{\mathrm{A}}}{\mathrm{V}}=\frac{\mathrm{PN}_{\mathrm{A}}}{\mathrm{RT}}=\frac{\mathrm{P}}{\mathrm{kT}}$
$\overline{\mathrm{v}}=\left(\frac{8 \mathrm{RT}}{\pi \mathrm{M}}\right)^{1 / 2}=\left(\frac{8 \mathrm{kT}}{\pi \mathrm{m}}\right)^{1 / 2}$

Mean free path, λ

- the average distance travelled between collisions is given by :
average distance travelled per unit time collision frequency

$$
=\underline{\mathrm{V}}_{1} \underline{\mathrm{z}_{1}}
$$

$$
\begin{aligned}
& =\frac{1}{2 \pi d_{1}{ }^{2} \mathrm{v}_{1}} \rho \\
& =\frac{\mathrm{kT}}{2 \pi d_{1}^{2} \rho}
\end{aligned}
$$

- Asụmming all molecules are moving

- Rate of collisions of molecules type 1 with molecules type $1, \mathrm{Z}_{11}$.
- No. of collisions per unit time per unit volume.

$$
\begin{aligned}
\mathrm{Z}_{11} & =\frac{1}{2} \mathrm{z}_{1} \rho \\
& =\frac{1}{2}\left(2 \pi d_{1}^{2} \mathrm{v}_{1} \rho\right) \rho \\
& =\frac{2}{2}\left(\pi d_{1}^{2} \mathrm{v}_{1} \rho^{2}\right) \\
& =\frac{1}{2}\left(\pi d_{1}^{2} \mathrm{v}_{1} \rho^{2}\right)
\end{aligned}
$$

- Bimolecular collisions between two gas type 1 and gas type 2
- $d_{12}=1 / 2\left(d_{1}+d_{2}\right)$
$-v_{12}=\left(v_{1}{ }^{2}+v_{2}{ }^{2}\right)^{1 / 2}$
$=\left(\frac{8 R T}{\pi \mathrm{M}_{1}}+\frac{8 \mathrm{RT})^{1 / 2}}{\pi \mathrm{M}_{2}}\right.$

$$
\begin{aligned}
& \left.=\frac{8 R T}{\pi} \frac{(1}{\mathrm{M}_{1}}+\frac{1}{\mathrm{M}_{2}}\right)^{1 / 2} \\
& =\frac{8 R T}{\pi} \frac{\left(\mathrm{M}_{1}+\mathrm{M}_{2}\right)}{\mathrm{M}_{1} \mathrm{M}_{2}}
\end{aligned}
$$

Assumming that only 1 molecule is moving (type 1 or type 2), collision frequency is given by :

$$
\begin{aligned}
& \mathrm{z}_{1(2)}=\pi d_{12}{ }^{2} \mathrm{v}_{12} \beta_{2} \\
& \mathrm{z}_{2(1)}=\pi d_{12}{ }^{2} \mathrm{v}_{12} \rho_{1}
\end{aligned}
$$

Collision density between molecule 1 and 2 :

$$
Z_{12}=\pi d_{12}{ }^{2} v_{12} \rho_{1} \rho_{2}
$$

- relates the no. of collisions with the wall or the no. of molecules passing through a small opening.

Collisions with a surface

Total number of collisions against the wall :
$=$ volume \times molecule dencity $A_{\nabla_{x}} \Delta \mathrm{~T} \times \rho$

Taking into account the presence of a range of velocities in the sample

No. of collisions $=\rho \mathrm{A} \Delta \mathrm{T} \int_{O} \mathrm{v}_{\mathrm{x}} \mathrm{f}\left(\mathrm{v}_{\mathrm{x}}\right) \mathrm{d}_{\mathrm{x}}$

Collision flux, $\mathrm{J}_{\mathrm{N}} \rightarrow$ no. of collisions per unit area per unit time \therefore

$$
\begin{aligned}
\mathrm{J}_{\mathrm{N}} & =\rho \int_{0} \mathrm{v}_{\mathrm{x}} \mathrm{f}\left(\mathrm{v}_{\mathrm{x}}\right) \mathrm{d}_{\mathrm{x}} \\
& =\rho\left(\frac{\mathrm{kT}}{2 \pi \mathrm{~m}}\right)^{1 / 2}
\end{aligned}
$$

in terms of mean velocity :

$$
J_{\mathrm{N}}=\frac{\rho \mathrm{v}}{4}
$$

- replaced by P from $\mathrm{P}=\rho \mathrm{kT}$

$$
J_{\mathrm{N}}=\frac{\mathrm{P}}{(2 \pi \mathrm{mkT})^{1 / 2}}
$$

- the basis of the Knudsen method for measuring vapour pressure of a solid or liquid.(placed in a container with a small hole)
- The loss in mass $\Delta \mathrm{w}$ of the container and sample is measured after time t .

$$
J_{\mathrm{N}}=\frac{\Delta \mathrm{w}}{\mathrm{mtA}}
$$

$J_{\mathrm{N}}=\mathrm{m}^{-2} \mathrm{~s}^{-1}$
where $\mathrm{A}=$ area of the hole

$$
J_{\mathrm{N}}=\frac{\Delta \mathrm{W}}{\mathrm{mtA}}=\frac{\mathrm{P}}{(2 \pi \mathrm{mkT})^{1 / 2}}
$$

Effusion

$J_{\mathrm{N}} \mathrm{A}=$ effusion rate $=\frac{\mathrm{PA}}{(2 \pi \mathrm{mkT})^{1 / 2}}$
é.g. At P and T - molecules separated from a vacuum by a small hole :
rate of escape of its molecules $=$ rate of striking the area of the hole

Gas Properties Relating to the Kinetic-Molecular Theory

Diffusion is the migration of molecules as a result of random molecular motion. The diffusion of two or more gases results in an intermingling of the molecules and, in a closed container, soon produces a homogeneous mixture.

(a)

(b)

Effusion is the escape of gas molecules from their container through a tiny orifice or pinhole.
'The rate at which effusion occur is directly proportional to molecular speeds.

When comparing the effusion of two gases at the same condition $\frac{\text { rate of effusion } A}{\text { rate of effusion } B}=\sqrt{\frac{\left(v_{\text {rms }}\right)_{A}}{\left(v_{\text {rms }}\right)_{B}}}=\sqrt{\frac{3 R T / M_{A}}{3 R T / M_{B}^{-}}}=\sqrt{\frac{M_{B}-}{M_{A}}}$

Graham's Law: the rates of effusion of two difference gases are inversely proportional to the square roots of their molar masses.

This means that molecules with a smaller mass (m) have a higher speed.
a ratio of
(1) molecular speeds
(2) effusion rates
(3) effusion times
$=\sqrt{\text { ratio of two molar mass }}$
(4) distance traveled by molecules
(5) amount of gas effusion

TRANSPORT PHENOMENA
 IN GASES

The rate of migration of a property such as mass and energy is measured by its Flux, J_{N}, the quantity of that property passing through a given area in a time interval.

- Gas not uniform with respect to composition, temperature and velocity.
- Rate of flow is proportional to the rate of change with distance.

县 Diffusion

Transport of matter
The flux of component i in the z direction due to diffusion is proportional to the conc. gradient, $\left(\mathrm{d}_{\mathrm{i}} / \mathrm{d}_{\mathrm{L}}\right.$, according to Fick's law :

$$
\text { Flux } J_{\mathrm{iz}}=-\mathrm{D}\left(\mathrm{~d} \rho_{\mathrm{i}} / \mathrm{d}_{\mathrm{z}}\right)
$$

where $\mathrm{D}=$ diffusion coefficient $\left(\mathrm{m}^{2} \mathrm{~s}^{-1}\right)$
$J_{\mathrm{i} z}=$ molecule $\mathrm{m}^{-2} \mathrm{~s}^{-1}$
$\mathrm{d} \rho_{\mathrm{i}} / \mathrm{d}_{\mathrm{z}}=$ molecule m^{-4}

Difussion

- Molecule that crosses the plane undergoes collision at two parallel planes
$\lambda=$ average distance travelled
between collision

$$
\rho\left(z_{0}+\lambda\right)=\rho_{0}+\left(\frac{\mathrm{d} \rho}{\mathrm{dz}}\right) \lambda
$$

$$
\mathrm{J}_{\mathrm{N}}=1 / 4 \rho \overline{\mathrm{v}}
$$

From above : $\mathrm{J}_{+}=1 / 4 \rho \overline{\mathrm{v}}\left(\mathrm{z}_{0}+\lambda\right)=1 / 4 \overline{\mathrm{v}}\left[\rho_{0}+\left(\frac{\mathrm{d} \rho}{\mathrm{dz}}\right) \lambda\right]$
From below: $\mathrm{J}_{-}=1 / 4 \rho \overline{\mathrm{v}}\left(\mathrm{z}_{0}-\lambda\right)=1 / 4 \overline{\mathrm{v}}\left[\rho_{0}-\left(\frac{\mathrm{d} \rho}{\mathrm{dz}}\right) \lambda\right]$

$$
\text { Net flux : J }-\mathrm{J}_{+}=-1 / 2 \overline{\mathrm{v}} \lambda\left(\frac{\mathrm{~d} \rho}{\mathrm{dz}}\right)
$$

Fick's law : $=-\mathrm{D}\left(\frac{\mathrm{d} \rho}{\mathrm{dz}}\right) ; \mathrm{D}=1 / 2 \overline{\mathrm{v}} \lambda(2 / \mathrm{s})$
Slightly more elaborate derivation which averages more carefully gives :

$$
D=1 / 3 \overline{\mathrm{v}} \lambda
$$

- λ decreases with increasing P, D decreases with increasing P
- λ increases with decreasing d , small molecules diffuse faster D decreases with increasing p
- D proportional to $\mathrm{T}^{3 / 2}$, diffusion increases with T

且 Thermal conduction

- Due to hotter atoms jumping into colder region \& vise versa

Flux of energy q_{z} in the z direction due to the temperature gradient is given by :

$$
\begin{aligned}
& \mathrm{q}_{\mathrm{z}}=-\kappa \mathrm{dT} / \mathrm{dz} \\
& \kappa=\text { thermal conductivity }\left(\mathrm{J} \mathrm{~m}^{-1} \mathrm{~s}^{-1} \mathrm{~K}^{-1}\right) \\
& \mathrm{q}_{\mathrm{z}}=\mathrm{J} \mathrm{~m}^{-2} \mathrm{~s}^{-1} \\
& \mathrm{dT} / \mathrm{dz}=\mathrm{K} \mathrm{~m}^{-1}
\end{aligned}
$$

$$
\mathrm{K}=1 / \mathrm{\rho} \rho \overline{\mathrm{v}} \mathrm{C}_{\mathrm{V}} \lambda
$$

Viscosity

- a measure of the resistance that a fluid offers to an applied shearing force. Viscosity η is defined by the following equation :

$$
F=-\eta \mathrm{dv}_{\mathrm{y}} / \mathrm{dz}
$$

$F=$ force per unit area $\left(\mathrm{kg} \mathrm{m} \mathrm{s}^{-2} / \mathrm{m}^{2}\right)$ (momentum m ${ }^{-2} 5^{-1}$)
$\eta=\mathrm{kg} \mathrm{m}^{-1} \mathrm{~s}^{-1}$ (Pas)
$\mathrm{dv}_{\mathrm{y}} / \mathrm{dz}=\mathrm{m} \mathrm{s}^{-1} / \mathrm{m}$

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{let}}=-1 / 3 \mathrm{p} \overline{\mathrm{v}} \mathrm{~m} \lambda\left(\frac{\mathrm{dv}_{\mathrm{y}}}{\mathrm{dz}}\right) \\
& =\eta=\frac{5 \pi}{16}\left(\frac{\mathrm{kT}}{\pi \mathrm{~m}}\right)^{1 / 2} \frac{\mathrm{~m}}{\pi \mathrm{~d}^{2}}
\end{aligned}
$$

Transport Properties	Type of flux	Unit
Diffusion	Matter	Molekul m${ }^{-2} \mathrm{~s}^{-1}$
Thermal conductivity	Thermal energy or heat	$\mathrm{J} \mathrm{m}^{-2} \mathrm{~s}^{-1}$
Viscosity	Momentum	Momentum $\mathrm{m}^{-2} \mathrm{~s}^{-1}$

